$V_{RRM} = 4500 V$

 $I_{FAVM} = 320 A$

 $I_{FSM} = 5 kA$

 $V_{F0} = 2 V$

 $r_F = 1.5 \text{ m}\Omega$

 $V_{DClink} = 2400 V$

Fast Recovery Diode

5SDF 03D4501

Doc. No. 5SYA 1106-02 Aug. 2000

- · Patented free-floating silicon technology
- Low switching losses
- Optimized to use as snubber and clamp diode in GTO and IGCT converters
- Industry standard press-pack ceramic housing, hermetically cold-welded
- · Cosmic radiation withstand rating

Blocking

V_{RRM}	Repetitive peak reverse voltage	4500 V	Half sine wave, $t_P = 10 \text{ ms}$, $f = 50 \text{ Hz}$		
I _{RRM}	Repetitive peak reverse current	≤ 50 mA	$V_R = V_{RRM}$, $T_j = 125$ °C		
V_{DClink}	Permanent DC voltage for 100 FIT failure rate	2400 V	100% Duty	Ambient cosmic radiation	
		2800 V	5% Duty	at sea level in open air.	

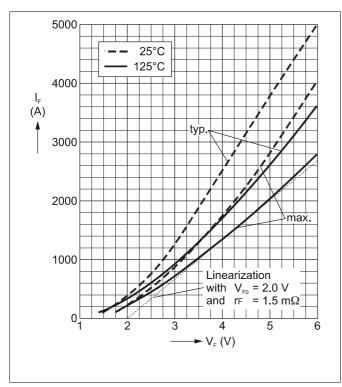
Mechanical data (see Fig. 7)

E	Mounting force	min.		10 kN
F _m	Mounting force	max.		12 kN
а	Acceleration:			
	Device unclamped		50 m/s^2	
	Device clamped		200 m/s^2	
m	Weight			0.25 kg
Ds	Surface creepage distance	•	2	30 mm
Da	Air strike distance	•	2	20 mm

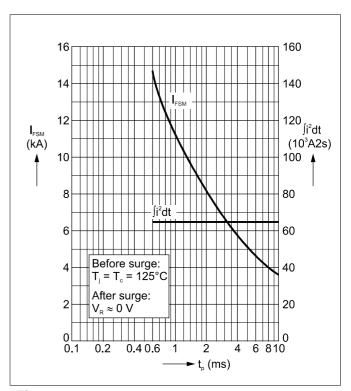
On-state (see Fig. 1, 2)

I _{FAVM}	Max. average on-state current	320 A	Half sine wave, T _c = 85°C
I _{FRMS}	Max. RMS on-state current	500 A	
I _{FSM}	Max. peak non-repetitive	5 kA	tp = 10 ms Before surge:
	surge current	12 kA	$tp = 1 ms T_c = T_j = 125^{\circ}C$
∫l ² dt	Max. surge current integral	125·10 ³ A ² s	tp = 10 ms After surge:
		72·10 ³ A ² s	tp = 1 ms $V_R \approx 0 \text{ V}$
V _F	Forward voltage drop	≤ 3.5 V	I _F = 1000 A
V _{F0}	Threshold voltage	2 V	Approximation for $T_j = 125$ °C
r _F	Slope resistance	1.5 mΩ	I _F = 2003000 A

Turn-on (see Fig. 3, 4)


V_{fr}	Peak forward recovery voltage	≤	140 V	di/dt = 1000 A/µs, T _j = 125°C
----------	-------------------------------	----------	-------	---

Turn-off (see Fig. 5)


I _{rr}	Reverse recovery current	≤	200 A	di/dt = 100 A/µs,	T _j =125°C,
Q _{rr}	Reverse recovery charge	\(\)	1000 μΟ	I _F = 2000 A,	$V_{RM} = 4500 V$,
Err	Turn-off energy	\(\)	J	$R_{\rm S} = 22 \Omega$,	$C_{\rm S} = 0.22 \mu F$

Thermal (see Fig. 8)

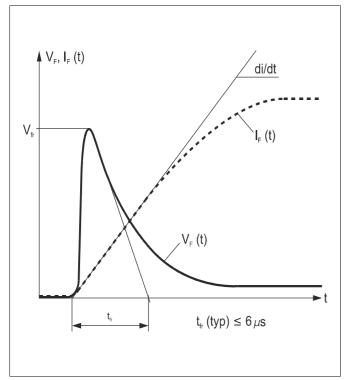

T_j	Operating junction temperature range	-4	0125°C		
T _{stg}	Storage temperature range	-4	0125°C		
R _{thJC}	Thermal resistance junction to case	≤	80 K/kW	Anode side cooled	
		≤	80 K/kW	Cathode side cooled	$F_{M} =$
		≤	40 K/kW	Double side cooled	10 12 kN
R _{thCH}	Thermal resistance case to heatsink	≤	16 K/kW	Single side cooled	
		≤	8 K/kW	Double side cooled	

Fig. 1 Forward current vs. forward voltage (typ. and max. values) and linear approximation of max. curve at 125°C.

Fig. 2 Surge current and fusing integral vs. pulse width (max. values) for non-repetitive, half-sinusoidal surge current pulses.

Fig. 3 Typical forward voltage waveform when the diode is turned on with a high di/dt.

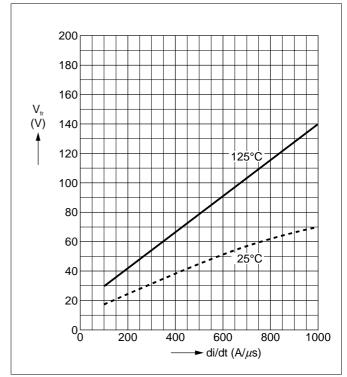
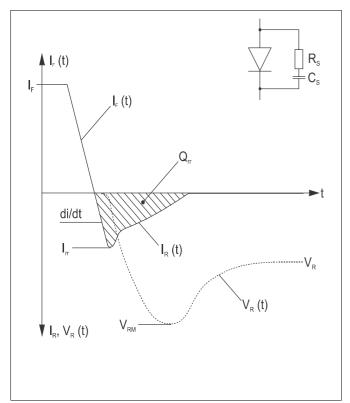
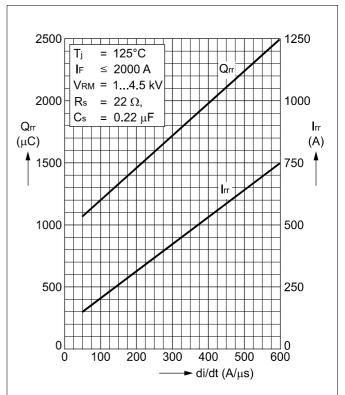
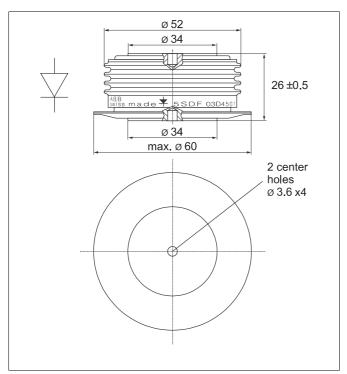


Fig. 4 Forward recovery voltage vs. turn-on di/dt (max. values).

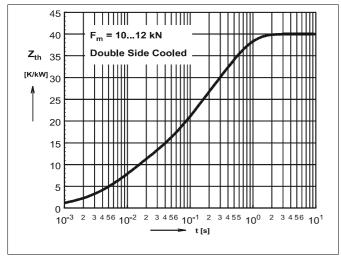

Fig. 5 Typical current and voltage waveforms at turn-off with conventional RC snubber circuit.

Fig. 6 Reverse recovery current and reverse recovery charge vs. di/dt (max. values).

Fig. 7 Outline drawing. All dimensions are in millimeters and represent nominal values unless stated otherwise.

$$Z \text{ thJC } (t) = \sum_{i=1}^{4} R_i (1 - e^{-t/\tau_i})$$

i	1	2	3	4
R _I (K/kW)	20.95	10.57	7.15	1.33
τ_{i} (s)	0.396	0.072	0.009	0.0044

 $F_m=10...\ 12\ kN$

Double side cooled

Fig. 8 Transient thermal impedance (junction-to-case) vs. time in analytical and graphical form (max. values).

ABB Semiconductors AG reserves the right to change specifications without notice.

ABB Semiconductors AG

Fabrikstrasse 2 CH-5600 Lenzburg, Switzerland

Tel: +41 (0)62 888 6419 Fax: +41 (0)62 888 6306 E-mail info@ch.abb.com Internet www.abbsem.com Doc. No. 5SYA 1106-02 Aug. 2000