V _{RRM}	=	4500 V
I _{FAVM}	=	650 A
I _{FSM}	=	16 kA
V _{F0}	=	1.4 V
r _F	=	1 m Ω
V _{DClink}	=	2800 V

Fast Recovery Diode 5SDF 07F4501

Doc. No. 5SYA 1107-03 Aug. 2000

- Patented free-floating silicon technology
- Low on-state and switching losses
- Optimized for use as freewheeling diode in GTO converters with high DC link voltages
- Standard press-pack housing, hermetically cold-welded
- Cosmic radiation withstand rating

Blocking

V _{RRM}	Repetitive peak reverse voltage	4500 V	Half sine wav	e, t _P = 10 ms, f = 50 Hz
I _{RRM}	Repetitive peak reverse current	\leq 50 mA	$V_{R} = V_{RRM,} T_{j}$	= 125°C
V _{DClink}	Permanent DC voltage for 100 FIT failure rate	2800 V	100% Duty	Ambient cosmic radiation at sea level in open air.

Mechanical data (see Fig. 11)

E	Mounting force	min.		20 kN
F _m		max.		24 kN
а	Acceleration:			
	Device unclamped			50 m/s ²
	Device clamped			200 m/s ²
m	Weight			0.46 kg
Ds	Surface creepage distance		\geq	33 mm
Da	Air strike distance		≥	20 mm

On-state (see Fig. 1, 2)

I _{FAVM}	Max. average on-state current	650 A	Half sine wave, $T_c = 85^{\circ}C$
I _{FRMS}	Max. RMS on-state current	1000 A	
I _{FSM}	Max. peak non-repetitive	16 kA	tp = 10 ms Before surge:
	surge current	44 kA	$tp = 1 ms T_c = T_j = 125^{\circ}C$
∫l²dt	Max. surge current integral	1.28·10 ⁶ A ² s	tp = 10 ms After surge:
		0.8·10 ⁶ A ² s	tp = 1 ms $V_R \approx 0 V$
V_{F}	Forward voltage drop	\leq 2.7 V	I _F = 1250 A
V_{F0}	Threshold voltage	1.4 V	Approximation for $T_j = 125^{\circ}C$
r _F	Slope resistance	1 mΩ	I _F = 4002000 A

Turn-on (see Fig. 3, 4)

V_{fr} Peak forward recovery voltage \leq	74 V di/dt = 500 A/µs, T _j = 125°0
---	---

Turn-off (see Fig. 5 to 10)

Irr	Reverse recovery current	\leq	600 A	$di/dt = 100 A/\mu s, I_F = 2000 A,$
Q _{rr}	Reverse recovery charge	\leq	1900 µC	$T_j = 125^{\circ}C, V_{RM} = 2500 V,$
Err	Turn-off energy	\leq	1 J	$C_S = \mu F (GTO snubber circuit)$

Thermal (see Fig. 12)

Tj	Operating junction temperature range	-4	0125°C		
T _{stg}	Storage temperature range	-4	0125°C		
R_{thJC}	Thermal resistance junction to case	\leq	40 K/kW	Anode side cooled	
		\leq	40 K/kW	Cathode side cooled	F _M =
		\leq	20 K/kW	Double side cooled	20… 24 kN
R_{thCH}	Thermal resistance case to heatsink	≤	10 K/kW	Single side cooled	
		\leq	5 K/kW	Double side cooled	

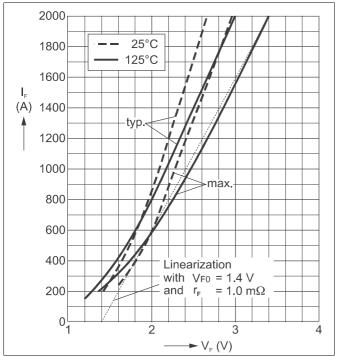


Fig. 1 Forward current vs. forward voltage (typ. and max. values) and linear approximation of max. curve at 125°C.

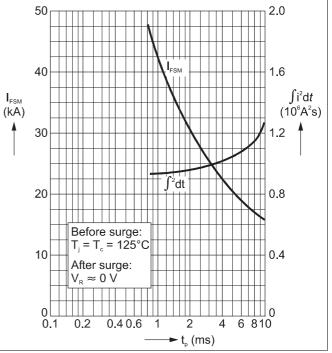


Fig. 2 Surge current and fusing integral vs. pulse width (max. values) for non-repetitive, half-sinusoidal surge current pulses.

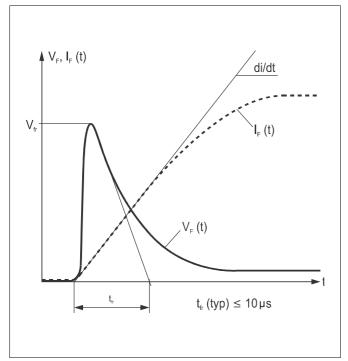


Fig. 3 Typical forward voltage waveform when the diode is turned on with a high di/dt.

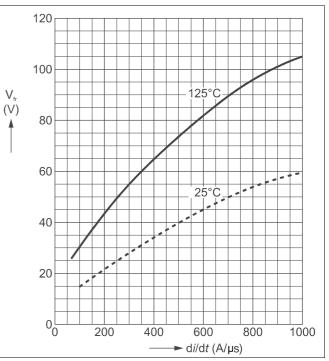


Fig. 4 Forward recovery voltage vs. turn-on di/dt (max. values).

5SDF 07F4501

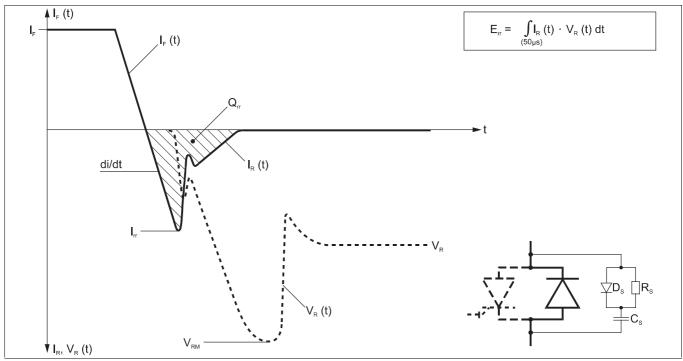


Fig. 5 Typical current and voltage waveforms at turn-off when the diode is connected to an RCD snubber, as often used in GTO circuits.

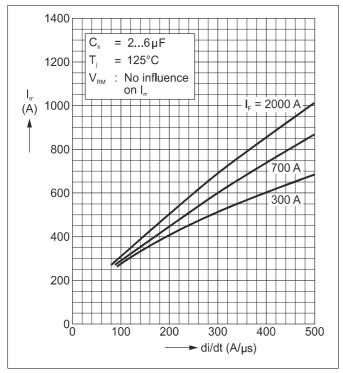


Fig. 6 Reverse recovery current vs. turn off di/dt (max. values).

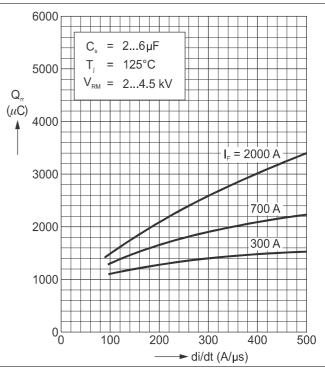


Fig. 7 Reverse recovery charge vs. turn off di/dt (max. values).

ABB Semiconductors AG reserves the right to change specifications without notice.

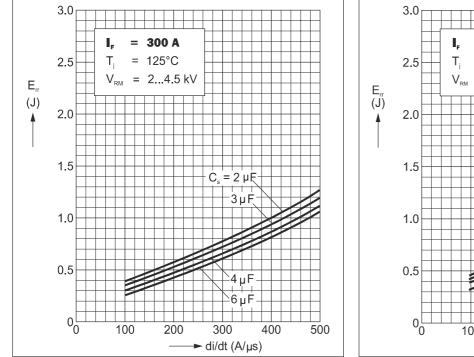


Fig. 8 Turn-off energy vs. turn-off di/dt for $I_F = 300 \text{ A} \text{ (max. values)}.$

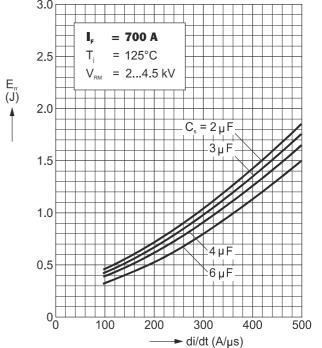
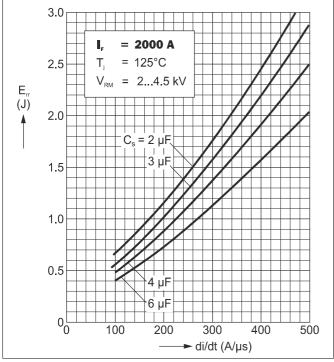
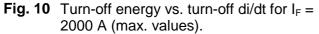
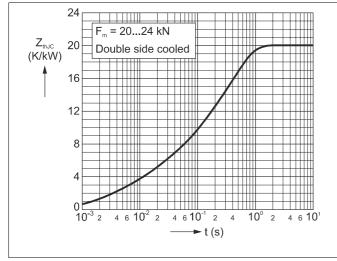





Fig. 9 Turn-off energy vs. turn-off di/dt for $I_F = 700 \text{ A} \text{ (max. values)}.$

5SDF 07F4501

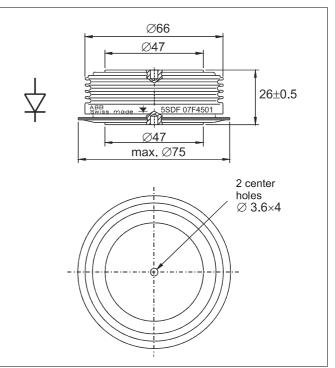


Fig. 11 Outline drawing. All dimensions are in millimeters and represent nominal values unless stated otherwise.

Z thJC (t) =
$$\sum_{i=1}^{4} R_i (1 - e^{-t/\tau_i})$$

i	1	2	3	4
R _I (K/kW)	11.83	4.26	1.63	2.28
τ _i (s)	0.432	0.071	0.01	0.0054

 $F_m = 20...24$ kN Double side cooled

Fig. 12 Transient thermal impedance (junction-to-case) vs. time in analytical and graphical form (max. values).

ABB Semiconductors AG reserves the right to change specifications without notice.

ABB Semiconductors AG Fabrikstrasse 2 CH-5600 Lenzburg, Switzerland

Tel:	+41 (0)62 888 6419
Fax:	+41 (0)62 888 6306
E-mail	info@ch.abb.com
Internet	www.abbsem.com

Doc. No. 5SYA 1107-03 Aug. 2000