V _{RRM}	=	6000 V
I _{FAVM}	=	1100 A
I _{FSM}	=	18 kA
V _{F0}	=	1.5 V
r _F	=	0.6 m Ω
V _{DClink}	=	3800 V

Fast Recovery Diode 5SDF 10H6004

Doc. No. 5SYA 1109-02 Aug. 2000

- Patented free-floating silicon technology
- Low on-state and switching losses
- Optimized for use as freewheeling diode in high-voltage GTO converters
- Standard press-pack housing, hermetically plasma-welded
- Cosmic radiation withstand rating

Blocking

V _{RRM}	Repetitive peak reverse voltage	6000 V	Half sine wave, $t_P = 10$ ms, $f = 50$ Hz	
I _{RRM}	Repetitive peak reverse current	≤ 50 mA	$V_R = V_{RRM}, T_j$	= 125°C
V _{DClink}	Permanent DC voltage for 100 FIT failure rate	3800 V	100% Duty	Ambient cosmic radiation at sea level in open air.

Mechanical data (see Fig. 6)

E	Mounting force	min.		36 kN
F _m	Mounting force	max.		44 kN
а	Acceleration:			
	Device unclamped			50 m/s ²
	Device clamped			200 m/s ²
m	Weight			0.83 kg
Ds	Surface creepage distance		\geq	30 mm
Da	Air strike distance		\geq	20 mm

On-state (see Fig. 1, 2)

I _{FAVM}	Max. average on-state current	1100 A	Half sine wave, $T_c = 85^{\circ}C$
I _{FRMS}	Max. RMS on-state current	1700 A	
I _{FSM}	Max. peak non-repetitive	18 kA	tp = 10 ms Before surge:
	surge current	44 kA	$tp = 1 ms T_c = T_j = 125^{\circ}C$
∫l²dt	Max. surge current integral	1.62·10 ⁶ A ² s	tp = 10 ms After surge:
		0.97.10 ⁶ A ² s	tp = 1 ms $V_R \approx 0 V$
V_{F}	Forward voltage drop	\leq 3 V	I _F = 2500 A
V_{F0}	Threshold voltage	1.5 V	Approximation for $T_j = 125^{\circ}C$
r _F	Slope resistance	0.6 mΩ	I _F = 2006000 A

Turn-on (see Fig. 3, 4)

V _{fr} Peak forward recovery voltage	≤	95 V	di/dt = 500 A/µs, T _j = 125°C
---	---	------	--

Turn-off (see Fig. 5)

I _{rr}	Reverse recovery current	\leq	1000 A	di/dt = 100 A/µs,	I _F =2000 A,
Q _{rr}	Reverse recovery charge	\leq	4700 µC	$T_j = 125^{\circ}C,$	$V_{\rm RM} = 2500 \rm V,$
Err	Turn-off energy	\leq	3.5 J	C _S = µF (GTO snu	lbber circuit)

Thermal (see Fig. 7)

Tj	Operating junction temperature range	-4	0125°C		
T _{stg}	Storage temperature range	-4	0125°C		
R_{thJC}	Thermal resistance junction to case	≤	24 K/kW	Anode side cooled	
		\leq	24 K/kW	Cathode side cooled	F _M =
		\leq	12 K/kW	Double side cooled	36… 44 kN
R_{thCH}	Thermal resistance case to heatsink	≤	6 K/kW	Single side cooled	
		\leq	3 K/kW	Double side cooled	

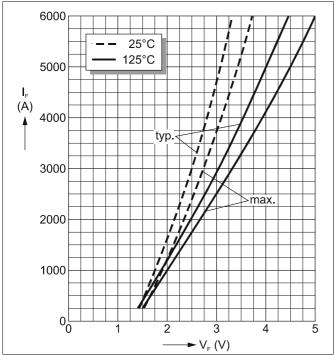


Fig. 1 Forward current vs. forward voltage (typ. and max. values) and linear approximation of max. curve at 125°C.

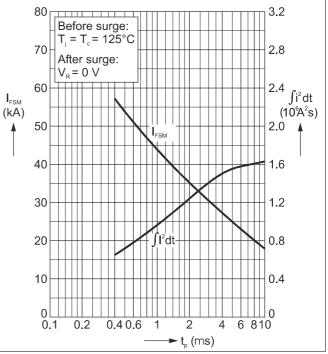


Fig. 2 Surge current and fusing integral vs. pulse width (max. values) for non-repetitive, half-sinusoidal surge current pulses.

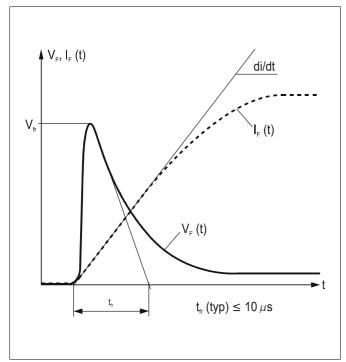


Fig. 3 Typical forward voltage waveform when the diode is turned on with a high di/dt.

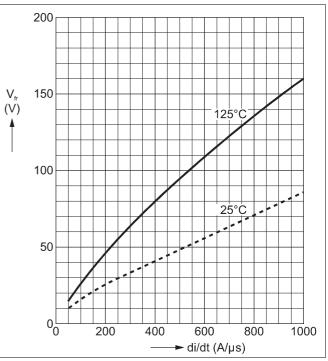
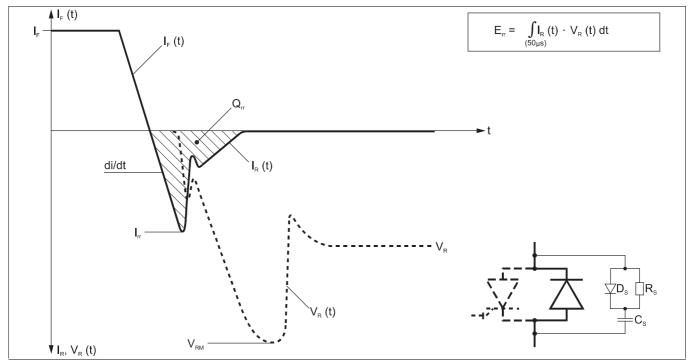



Fig. 4 Forward recovery voltage vs. turn-on di/dt (max. values).

5SDF 10H6004

Fig. 5 Typical current and voltage waveforms at turn-off when the diode is connected to an RCD snubber, as often used in GTO circuits.

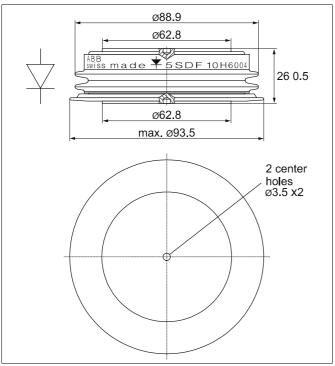
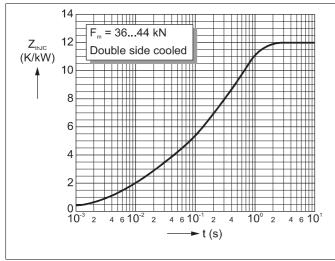



Fig. 6 Outline drawing. All dimensions are in millimeters and represent nominal values unless stated otherwise.

Z thJC	(t) =	$\sum_{i=1}^{4} R$	i (1 - e	-t/ <i>ti</i>)
i	1	2	3	4
R _I (K/kW)	11.83	2.00	1.84	0.71

ı (K/kVV)	11.83	2.00	1.84	0.71
τ_i (s)	0.47	0.091	0.01	0.0047
F _m = 36… 44 kN				

Double side cooled

Fig. 7 Transient thermal impedance (junction-to-case) vs. time in analytical and graphical form (max. values).

ABB Semiconductors AG reserves the right to change specifications without notice.

ABB Semiconductors AG Fabrikstrasse 2 CH-5600 Lenzburg, Switzerland

Tel:	+41 (0)62 888 6419
Fax:	+41 (0)62 888 6306
E-mail	info@ch.abb.com
Internet	www.abbsem.com

Doc. No. 5SYA 1109-02 Aug. 2000