$V_{RRM} = 4500 V$

 $I_{FAVM} = 1200 A$

 $I_{FSM} = 25 \text{ kA}$

 $V_{F0} = 1.3 V$

 $r_F = 0.48 \text{ m}\Omega$

 $V_{DClink} = 2800 V$

Fast Recovery Diode

5SDF 13H4501

Doc. No. 5SYA 1104-02 Aug. 2000

- · Patented free-floating silicon technology
- · Low on-state and switching losses
- Optimized for use as freewheeling diode in GTO converters with high DC link voltages
- Standard press-pack housing, hermetically plasma-welded
- Cosmic radiation withstand rating

Blocking

V_{RRM}	Repetitive peak reverse voltage	4500 V	Half sine wave, $t_P = 10 \text{ ms}$, $f = 50 \text{ Hz}$	
I _{RRM}	Repetitive peak reverse current	≤ 50 mA	$V_R = V_{RRM}, T_j =$	= 125°C
V_{DClink}	Permanent DC voltage for 100 FIT failure rate	2800 V	100% Duty	Ambient cosmic radiation at sea level in open air.

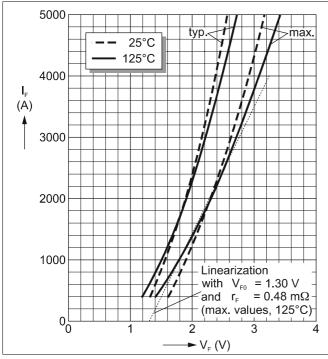
Mechanical data (see Fig. 11)

Е	Mounting force	min.		36 kN
F _m	Mounting force	max.		44 kN
а	Acceleration:			
	Device unclamped		50 m/s^2	
	Device clamped		200 m/s^2	
m	Weight			0.83 kg
Ds	Surface creepage distance		2	30 mm
D _a	Air strike distance	•	≥	20 mm

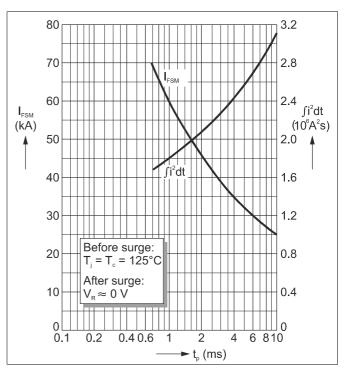
On-state

I _{FAVM}	Max. average on-state current	1200 A	Half sine wave, T _c = 85°C
I _{FRMS}	Max. RMS on-state current	1900 A	
I _{FSM}	Max. peak non-repetitive	25 kA	tp = 10 ms Before surge:
	surge current	60 kA	$tp = 1 ms T_c = T_j = 125^{\circ}C$
∫l ² dt	Max. surge current integral	3.13·10 ⁶ A ² s	tp = 10 ms After surge:
		1.8·10 ⁶ A ² s	tp = 1 ms $V_R \approx 0 \text{ V}$
V _F	Forward voltage drop	≤ 2.5 V	I _F = 2500 A
V _{F0}	Threshold voltage	1.3 V	Approximation for $T_j = 125^{\circ}C$
r _F	Slope resistance	0.48 mΩ	I _F = 4004000 A

Turn-on (see Fig. 3, 4)


V_{fr}	Peak forward recovery voltage	≤	50 V	di/dt = 500 A/µs, T _j = 125°C
----------	-------------------------------	----------	------	--

Turn-off (see Fig. 5 to 10)


Irr	Reverse recovery current	<	800 A	di/dt= 100 A/µs,	I _F =2000 A,
Q _{rr}	Reverse recovery charge	<	3000 μC	$T_j = 125^{\circ}C,$	$V_{RM} = 2500 V$,
Err	Turn-off energy	<	1.25 J	$C_S = \mu F$ (GTO snubber circuit)	

Thermal (see Fig. 12)

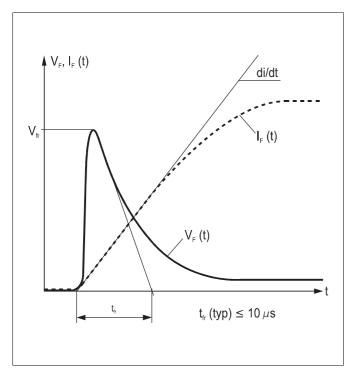

T_j	Operating junction temperature range	-4	0125°C		
T _{stg}	Storage temperature range	-4	0125°C		
R _{thJC}	Thermal resistance junction to case	≤	24 K/kW	Anode side cooled	
		≤	24 K/kW	Cathode side cooled	F _M =
		≤	12 K/kW	Double side cooled	36 44 kN
R _{thCH}	Thermal resistance case to heatsink	≤	6 K/kW	Single side cooled	
		≤	3 K/kW	Double side cooled	

Fig. 1 Forward current vs. forward voltage (typ. and max. values) and linear approximation of max. curve at 125°C.

Fig. 2 Surge current and fusing integral vs. pulse width (max. values) for non-repetitive, half-sinusoidal surge current pulses.

Fig. 3 Typical forward voltage waveform when the diode is turned on with a high di/dt.

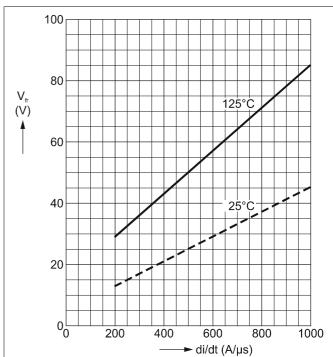
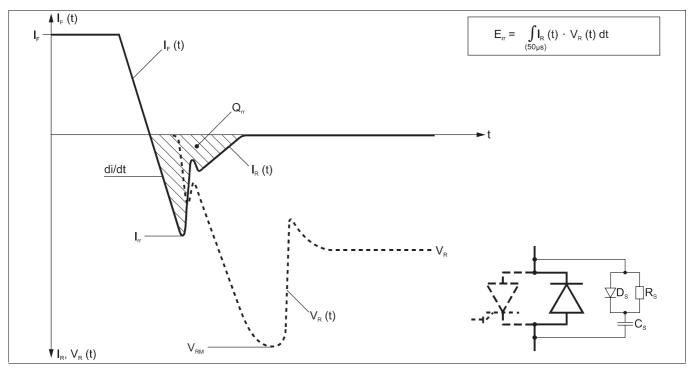



Fig. 4 Forward recovery voltage vs. turn-on di/dt (max. values).

Fig. 5 Typical current and voltage waveforms at turn-off when the diode is connected to an RCD snubber, as often used in GTO circuits.

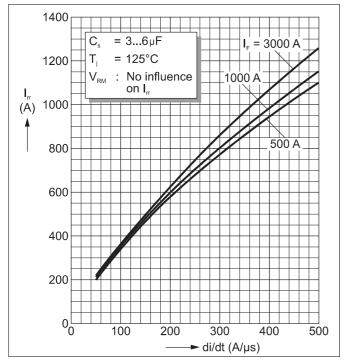
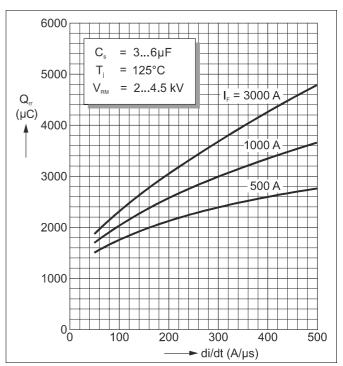



Fig. 6 Reverse recovery current vs. turn off di/dt (max. values).

Fig. 7 Reverse recovery charge vs. turn off di/dt (max. values).

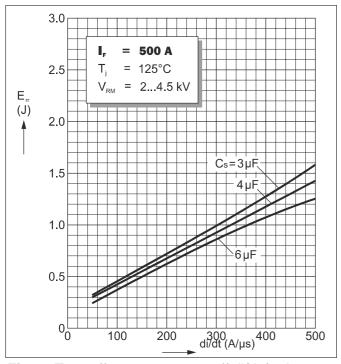
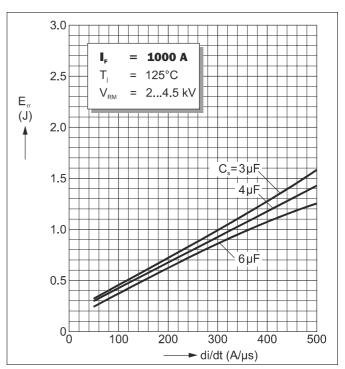
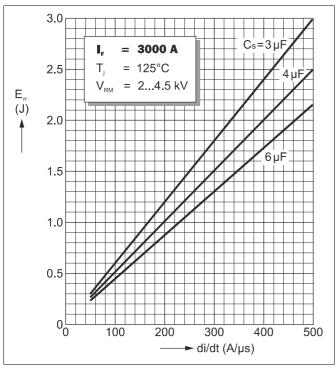
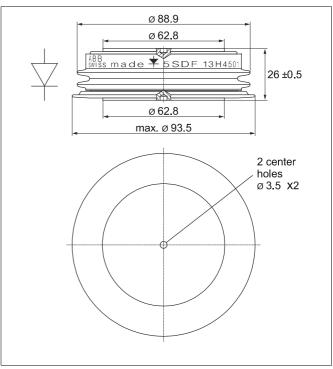


Fig. 8 Turn-off energy vs. turn-off di/dt for $I_F = 500 \text{ A (max. values)}$.

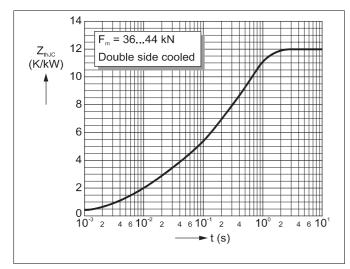

Fig. 9 Turn-off energy vs. turn-off di/dt for $I_F = 1000 \text{ A (max. values)}$.

Fig. 10 Turn-off energy vs. turn-off di/dt for $I_F = 3000 \text{ A (max. values)}$.

Fig. 11 Outline drawing. All dimensions are in millimeters and represent nominal values unless stated otherwise.

Z thJC (t) =
$$\sum_{i=1}^{4} R_i(1 - e^{-t/\tau_i})$$

i	1	2	3	4
R _I (K/kW)	7.44	2.00	1.84	0.71
τ _i (s)	0.47	0.091	0.011	0.0047

 $F_m = 36... 44 \text{ kN}$

Double side cooled

Fig. 12 Transient thermal impedance (junction-to-case) vs. time in analytical and graphical form (max. values).

ABB Semiconductors AG reserves the right to change specifications without notice.

ABB Semiconductors AG

Fabrikstrasse 2 CH-5600 Lenzburg, Switzerland

Tel: +41 (0)62 888 6419 Fax: +41 (0)62 888 6306 E-mail info@ch.abb.com Internet www.abbsem.com Doc. No. 5SYA 1104-02 Aug. 2000