V _{RRM}	=	4500 V
I _{FAVM}	=	1400 A
I _{FSM}	=	25 kA
V _{F0}	=	1.2 V
r _F	=	0.32 m Ω
V _{DClink}	=	2200 V

Fast Recovery Diode 5SDF 14H4505

Doc. No. 5SYA 1110-02 Aug. 2000

- Patented free-floating silicon technology
- Low on-state and switching losses
- Optimized for use as freewheeling diode in GTO converters with low DC link voltages
- Standard press-pack housing, hermetically plasma-welded
- Cosmic radiation withstand rating

Blocking

V _{RRM}	Repetitive peak reverse voltage	4500 V	Half sine wav	re, t _P = 10 ms, f = 50 Hz
I _{RRM}	Repetitive peak reverse current	≤ 50 mA	$V_{R} = V_{RRM,} T_{j}$	= 125°C
V _{DClink}	Permanent DC voltage for 100 FIT failure rate	2200 V	100% Duty	Ambient cosmic radiation at sea level in open air.

Mechanical data (see Fig. 11)

E	Mounting force	min.		36 kN
F _m		max.		44 kN
а	Acceleration:			
	Device unclamped			50 m/s ²
	Device clamped			200 m/s ²
m	Weight			0.83 kg
Ds	Surface creepage distance		\geq	30 mm
D _a	Air strike distance		≥	20 mm

On-state

I _{FAVM}	Max. average on-state current	1400 A	Half sine wave, T _c = 85°C
I _{FRMS}	Max. RMS on-state current	2200 A	
I _{FSM}	Max. peak non-repetitive	25 kA	tp = 10 ms Before surge:
	surge current	60 kA	$tp = 1 ms T_c = T_j = 125^{\circ}C$
∫l²dt	Max. surge current integral	3.13·10 ⁶ A ² s	tp = 10 ms After surge:
		1.8·10 ⁶ A ² s	tp = 1 ms $V_R \approx 0 V$
V _F	Forward voltage drop	≤ 2 V	I _F = 2500 A
V _{F0}	Threshold voltage	1.2 V	Approximation for $T_j = 125^{\circ}C$
r _F	Slope resistance	0.32 mΩ	I _F = 4004000 A

Turn-on (see Fig. 3, 4)

V _{fr} Peak forward recovery voltage $\leq 30 \text{ V}$ di/dt = 500 A/µs, T _i = 125°C
--

Turn-off (see Fig. 5 to 10)

Irr	Reverse recovery current	\leq	1000 A	di/dt= 100 A/µs,	I _F =2000 A,
Q _{rr}	Reverse recovery charge	\leq	3700 µC	, ,	$V_{RM} = 2500 V,$
Err	Turn-off energy	\leq	1.6 J	$C_S = \mu F (GTO snub$	ber circuit)

Thermal (see Fig. 12)

Tj	Operating junction temperature range	-4	0125°C		
T _{stg}	Storage temperature range	-4	0125°C		
R_{thJC}	Thermal resistance junction to case	\leq	24 K/kW	Anode side cooled	
		≤	24 K/kW	Cathode side cooled	F _M =
		\leq	12 K/kW	Double side cooled	36… 44 kN
R_{thCH}	Thermal resistance case to heatsink	≤	6 K/kW	Single side cooled	
		\leq	3 K/kW	Double side cooled	

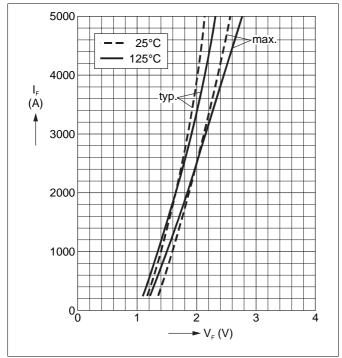


Fig. 1 Forward current vs. forward voltage (typ. and max. values) and linear approximation of max. curve at 125°C.

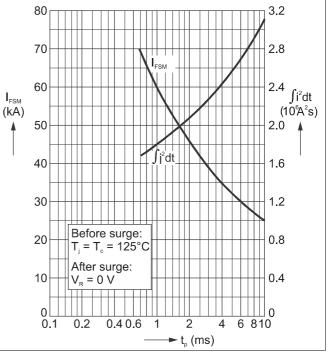


Fig. 2 Surge current and fusing integral vs. pulse width (max. values) for non-repetitive, half-sinusoidal surge current pulses.

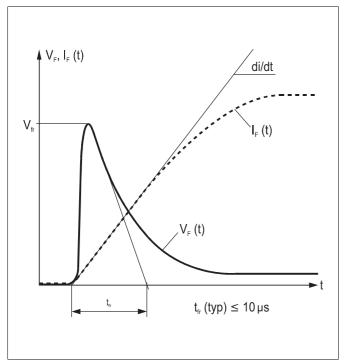


Fig. 3 Typical forward voltage waveform when the diode is turned on with a high di/dt.

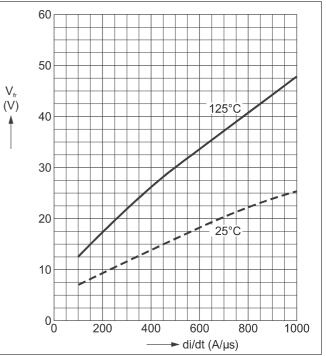


Fig. 4 Forward recovery voltage vs. turn-on di/dt (max. values).

5SDF 14H4505

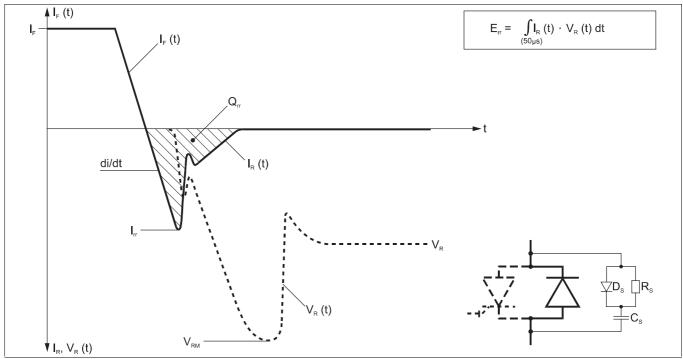
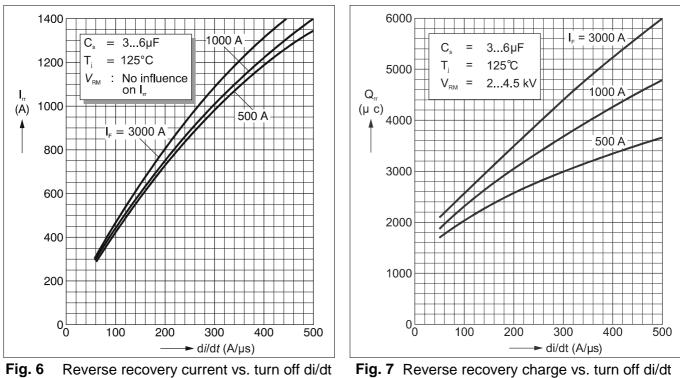
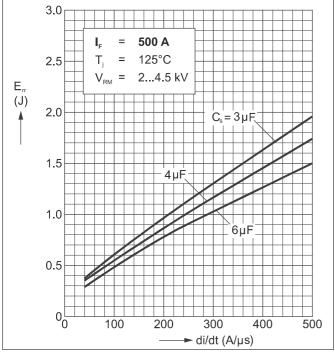
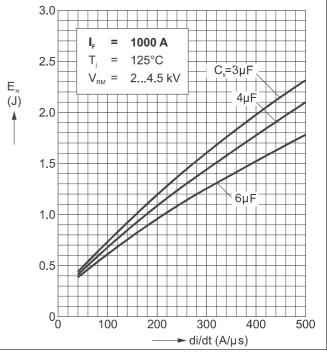
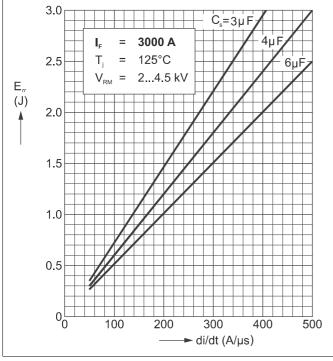
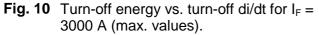



Fig. 5 Typical current and voltage waveforms at turn-off when the diode is connected to an RCD snubber, as often used in GTO circuits.

(max. values).

Fig. 7 Reverse recovery charge vs. turn off di/dt (max. values).


Fig. 8 Turn-off energy vs. turn-off di/dt for $I_F = 500 \text{ A} \text{ (max. values)}.$

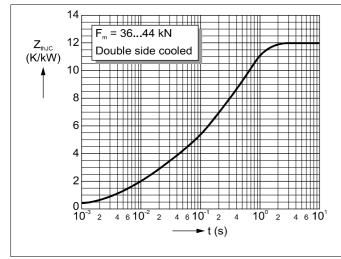


Fig. 9 Turn-off energy vs. turn-off di/dt for $I_F = 1000 \text{ A} \text{ (max. values)}.$

5SDF 14H4505

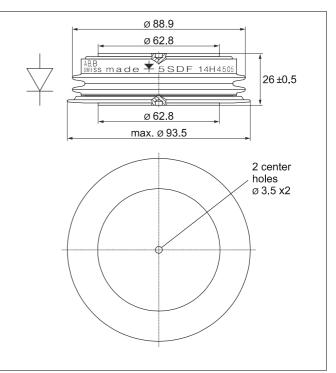


Fig. 11 Outline drawing. All dimensions are in millimeters and represent nominal values unless stated otherwise.

Z thJC (t) =
$$\sum_{i=1}^{4} R_i (1 - e^{-t/\tau_i})$$

i	1	2	3	4
R _I (K/kW)	7.44	2.00	1.84	0.71
τ _i (s)	0.47	0.091	0.011	0.0047

F_m = 36... 44 kN

Double side cooled

Fig. 12 Transient thermal impedance (junction-to-case) vs. time in analytical and graphical form (max. values).

ABB Semiconductors AG reserves the right to change specifications without notice.

ABB Semiconductors AG Fabrikstrasse 2 CH-5600 Lenzburg, Switzerland

Tel:	+41 (0)62 888 6419
Fax:	+41 (0)62 888 6306
E-mail	info@ch.abb.com
Internet	www.abbsem.com

Doc. No. 5SYA 1110-02 Aug. 2000