V _{DRM}	=	2500	V
I _{tgqm}	=	2500	Α
I _{TSM}	=	16	kA
V _{T0}	=	1.66	V
r _T	=	0.57	$\mathbf{m}\Omega$
V_{DClin}	=	1400	V

Gate turn-off Thyristor **5SGA 25H2501**

Doc. No. 5SYA 1206-01 Aug. 2000

- Patented free-floating silicon technology
- Low on-state and switching losses
- Annular gate electrode
- Industry standard housing
- Cosmic radiation withstand rating

Blocking

	<u> </u>					
V_{DRM}	Repetitive peak off-state voltage		2500	V	$V_{GR} \ge 2V$	
V _{RRM}	Repetitive peak reverse voltage		17	V		
I _{DRM}	Repetitive peak off-state current	\leq	30	mA	$V_D = V_{DRM}$ $V_{GR} \ge 2V$	
I _{RRM}	Repetitive peak reverse current	\leq	50	mA	$V_R = V_{RRM}$ $R_{GK} = \infty$	
V _{DClink}	Permanent DC voltage for 100		1400	V	$-40 \le T_j \le 125$ °C. Ambient cosmic	
	FIT failure rate				radiation at sea level in open air.	

Mechanical data (see Fig. 19)

F _m	Mounting force	min.		17	kN
	Mounting force	max.		24	kN
А	Acceleration:				
	Device unclamped			50	m/s²
	Device clamped			200	m/s ²
М	Weight			0.8	kg
Ds	Surface creepage distance	;	\sim	22	mm
Da	Air strike distance		\geq	13	mm

GTO Data On-state

011-516			1		
I_{TAVM}	Max. average on-state current	830 A	Half sine wave, $T_c = 85 \ ^{\circ}C$		
I _{TRMS}	Max. RMS on-state current	1300 A			
I _{TSM}	Max. peak non-repetitive	16 kA	$t_{P} = 10 \text{ ms} \text{T}_{j} = 125^{\circ}\text{C}$		
	surge current	32 kA	$t_P = 1 \text{ ms}$ After surge:		
l ² t	Limiting load integral	1.28·10 ⁶ A ² s	$t_{\rm P}$ = 10 ms $V_{\rm D} = V_{\rm R} = 0^{\rm V}$		
		0.51.10 ⁶ A ² s	$t_P = 1 \text{ ms}$		
V_{T}	On-state voltage	3.10 V	I _T = 2500 A		
V_{T0}	Threshold voltage	1.66 V	$I_{T} = 200 - 3000 \text{ A} \text{ T}_{j} = 125 ^{\circ}\text{C}$		
r _T	Slope resistance	0.57 mΩ			
I _H	Holding current	50 A	$T_j = 25 °C$		

Gate

Guic						
V_{GT}	Gate trigger voltage	1.0 V	V_{D}	= 24 V	$T_j =$	25 °C
I _{GT}	Gate trigger current	2.5 A	R_A	= 0.1 Ω		
V_{GRM}	Repetitive peak reverse voltage	17 V				
I _{GRM}	Repetitive peak reverse current	50 mA	V_{GR}	= V _{GRM}		

Turn-on switching

di/dt _{crit}	Max. rate of rise of on-state	400 A/µs	f = 200Hz	$I_{T} = 2500$) A, T _j	= 125 °C
	current	700 A/µs	f = 1Hz	I _{GM} = 30	A, di _G /dt	= 20 A/µs
t _d	Delay time	1.5 µs	V _D =	$0.5 V_{\text{DRM}}$	T _j =	125 °C
t _r	Rise time	3.5 µs	$I_T = 2$	500 A	di/dt =	200 A/µs
t _{on(min)}	Min. on-time	80 µs	I _{GM} =	30 A	di _G /dt =	20 A/µs
Eon	Turn-on energy per pulse	0.85 Ws	C _S =	6 µF	R _s =	5Ω

Turn-off switching

I _{TGQM}	Max controllable turn-off	2500 A	$V_{\text{DM}} = V_{\text{DRM}} \qquad di_{\text{GQ}}/dt = 30 \text{ A}/\mu\text{s}$
	current		$C_S ~=~ 6~\mu F \qquad L_S ~\leq~ 0.3~\mu H$
t _s	Storage time	24.0 µs	$V_D = \frac{1}{2} V_{DRM} V_{DM} = V_{DRM}$
t _f	Fall time	2.0 µs	$T_j = 125 \ ^\circ C \ di_{GQ}/dt = 30 \ A/\mu s$
t _{off(min)}	Min. off-time	80 µs	I _{TGQ} = I _{TGQM}
E _{off}	Turn-off energy per pulse	3.2 Ws	$C_S = 6 \mu F R_S = 5 \Omega$
I _{GQM}	Peak turn-off gate current	700 A	$L_{S} \leq 0.3 \ \mu H$

Therma	al		
Tj	Storage and operating	-40125°C	
	junction temperature range		
R _{thJC}	Thermal resistance	30 K/kW	Anode side cooled
	junction to case	39 K/kW	Cathode side cooled
		17 K/kW	Double side cooled
R_{thCH}	Thermal resistance case to	10 K/kW	Single side cooled
	heat sink	5 K/kW	Double side cooled

Analytical function for transient thermal impedance:

Z thJC (t) =
$$\sum_{i=1}^{4} R_i (1 - e^{-t/\tau_i})$$

i	1	2	3	4
R _I (K/kW)	11.7	4.7	0.64	0.0001
τ_i (s)	0.9	0.26	0.002	0.001

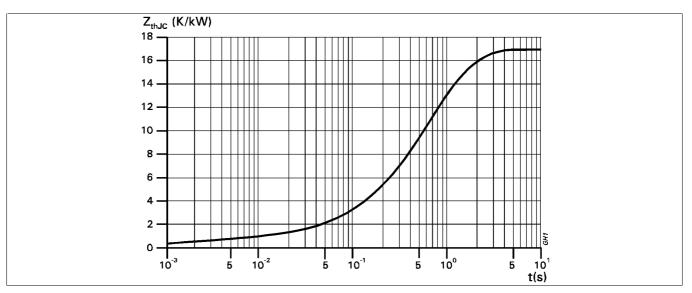


Fig. 1 Transient thermal impedance, junction to case.

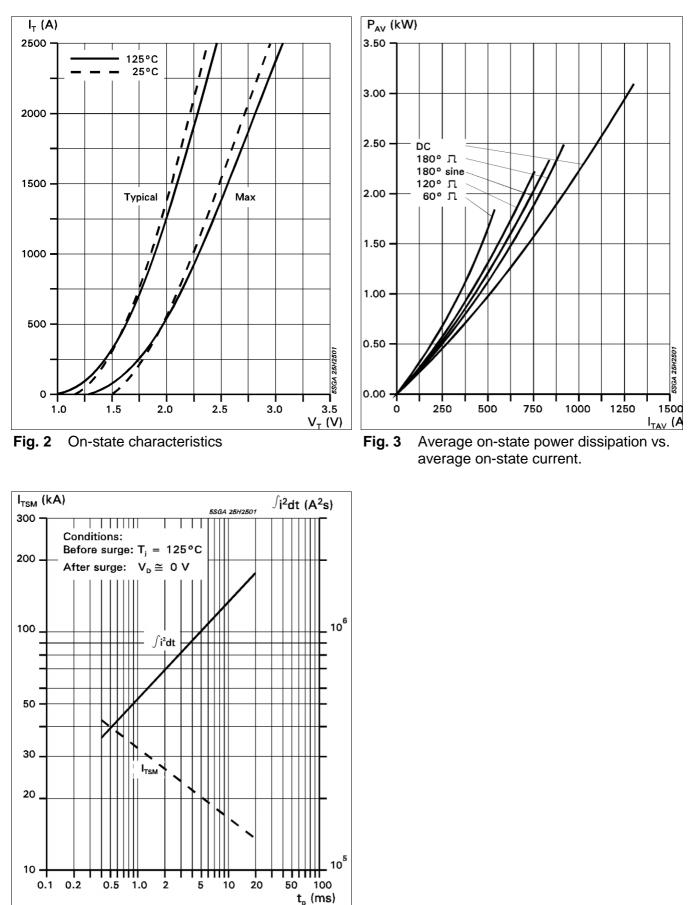
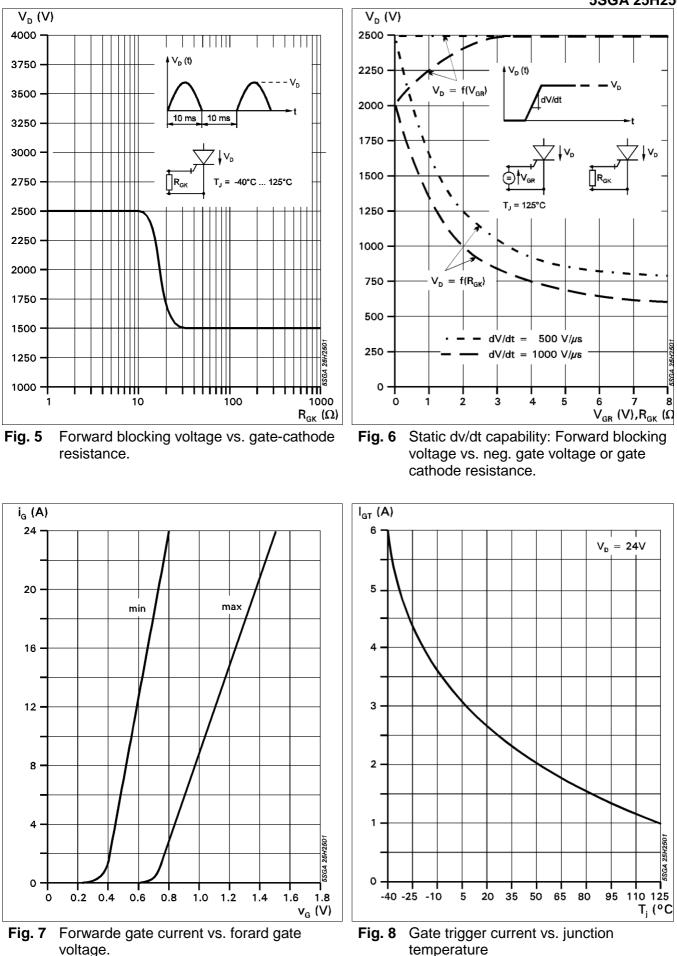
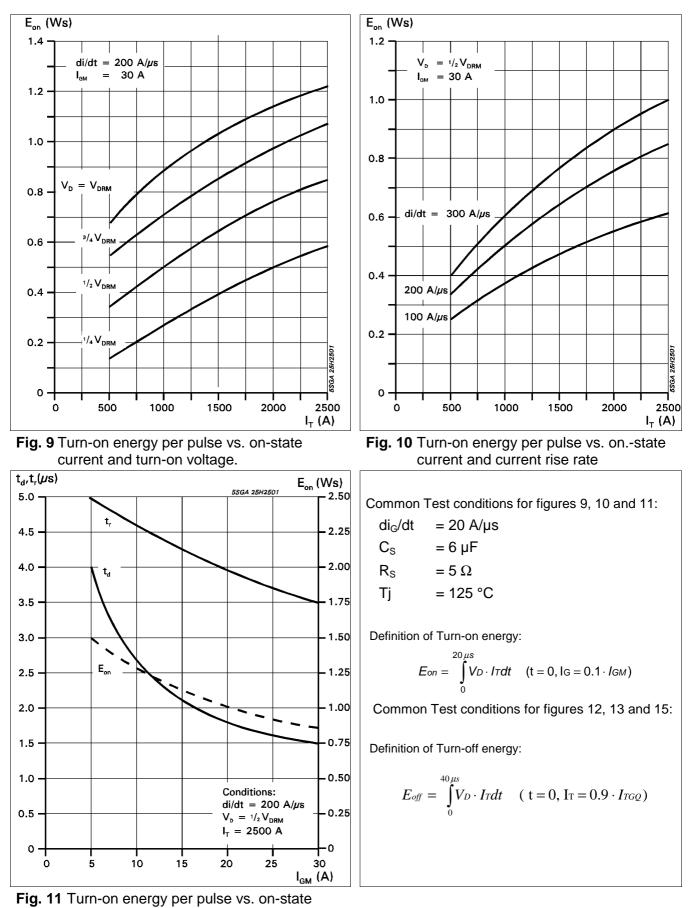




Fig. 4 Surge current and fusing integral vs. pulse width

5SGA 25H2501

current and turn-on voltage.

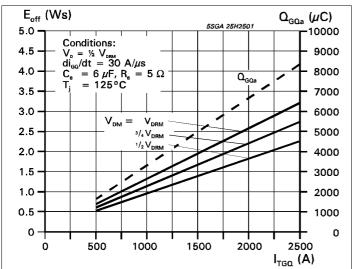
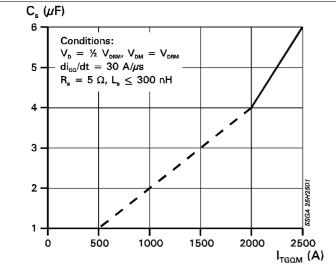
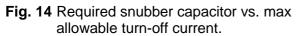




Fig. 12 Turn-off energy per pulse vs. turn-off current and peak turn-off voltage. Extracted gate charge vs. turn-off current.

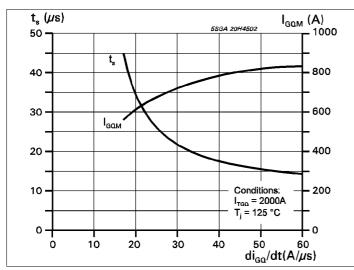


Fig. 16 Storage time and peak turn-off gate current vs. neg. gate current rise rate.

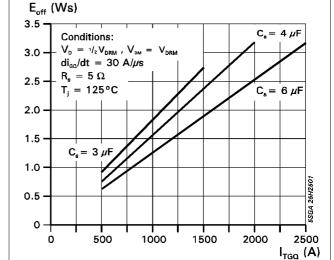
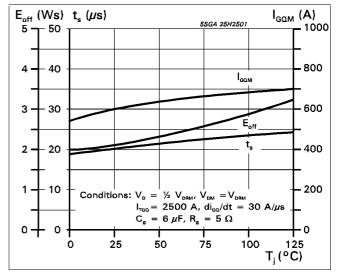
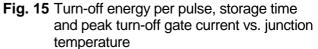




Fig. 13 Turn-off energy per pulse vs. turn-off current and snubber capacitance.

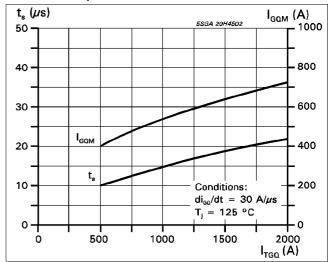


Fig. 17 Storage time and peak turn-off gate current vs. turn-off current

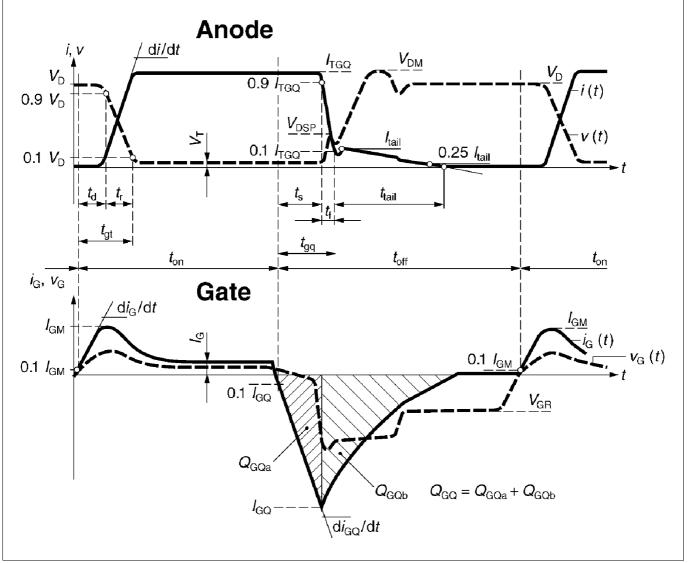


Fig. 18 General current and voltage waveforms with GTO-specific symbols

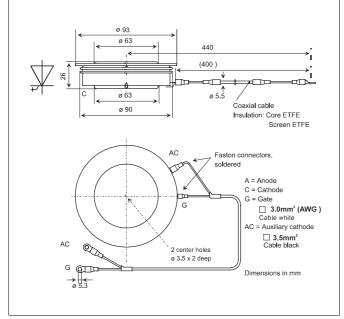


Fig. 19 Outline drawing. All dimensions are in millimeters and represent nominal values unless stated otherwise.

Reverse avalanche capability

In operation with an antiparallel freewheeling diode, the GTO reverse voltage V_R may exceed the rate value V_{RRM} due to stray inductance and diode turn-on voltage spike at high di/dt. The GTO is then driven into reverse avalanche. This condition is not dangerous for the GTO provided avalanche time and current are below 10 µs and 1000 A respectively. However, gate voltage must remain negative during this time. Recommendation : $V_{GR} = 10...15$ V.

ABB Semiconductors AG reserves the right to change specifications without notice.

ABB Semiconductors AG Fabrikstrasse 2 CH-5600 Lenzburg, Switzerland

 Tel:
 +41 (0)62 888 6419

 Fax:
 +41 (0)62 888 6306

 E-mail
 info@ch.abb.com

 Internet
 www.abbsem.com

Doc. No. 5SYA 1206-01 Aug. 2000