LIXYS

DHF 30 IM 600QB

advanced

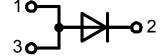
V _{RRM} =	600 V
I _{FAV} =	30 A
t _{rr} =	35 ns

Backside: cathode

Package:

- TO-3P
- Industry standard outline
 - compatible with TO-247
- Epoxy meets UL 94V-0
- RoHS compliant

Son	ic-F	RD	


High Performance Fast Recovery Diode Low Loss and Soft Recovery Single Diode

Part number

DHF 30 IM 600QB

Features / Advantages:

- Planar passivated chips
- Very low leakage current
- Very short recovery time
- Improved thermal behaviour
- Very low Irm-values
- Very soft recovery behaviour
 Avalanche voltage rated for reliable
- operationSoft reverse recovery for low EMI/RFI
- Low Irm reduces:
- Power dissipation within the diode
- Turn-on loss in the commutating switch

Applications:

- Antiparallel diode for high frequency switching devices
- Antisaturation diode
- Snubber diode
- Free wheeling diode
- Rectifiers in switch mode power supplies (SMPS)
- Uninterruptible power supplies (UPS)

			Ratings				
Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{RRM}	max. repetitive reverse voltage		T _{vj} = 25 °C			600	V
l _R	reverse current	V _R = 600 V	T _{vj} = 25 °C			50	μA
		V _R = 600 V	T _{vJ} = 125 °C			5	mA
V _F	forward voltage	I _F = 30 A	T _{vJ} = 25 °C			2.36	V
		$I_{F} = 60 A$			0.00	3.15	V
		I _F = 30 A	T _{vJ} = 125 °C			2.20	V
		I _F = 60 A			0.00	3.08	V
I _{FAV}	average forward current	rectangular, d = 0.5	T _c = 35 °C			30	А
V _{F0}	threshold voltage for power loss calculation only $T_{vJ} = 150 ^{\circ}C$					1.31	V
r _F	slope resistance \int	calculation only				28.6	mΩ
R _{thJC}	thermal resistance junction to case					3.50	K/W
T _{vj}	virtual junction temperature			-55		150	°C
P _{tot}	total power dissipation		$T_c = 25 °C$			180	W
I _{FSM}	max. forward surge current	t_p = 10 ms (50 Hz), sine	$T_{vJ} = 45 °C$			200	Α
I _{RM}	max. reverse recovery current	$I_{\rm F} = 30 {\rm A};$	T _{vj} = 25 °C		12		Α
		-di _c /dt = 600 A/µs	T _{vJ} = 125 °C				Α
t _{rr}	reverse recovery time	I	T _{vJ} = 25 °C		35		ns
		V _R = 400 V	T _{vJ} = 125 °C				ns
C,	junction capacitance	$V_{R} = 300 V; f = 1 MHz$	T _{vJ} = 25 °C		40		pF
E _{AS}	non-repetitive avalanche energy	I_{AS} = tbd A; L = 100 μ H	$T_{vJ} = 25 °C$			tbd	mJ
I _{AR}	repetitive avalanche current	$V_{A} = 1.5 \cdot V_{R}$ typ.; f = 10 kHz	<u>.</u>			tbd	А
					1		

LIXYS

DHF 30 IM 600QB

advanced

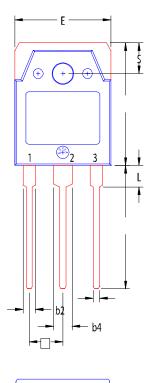
				Ratings		
Symbol	Definition	Conditions	min.	typ.	max.	Unit
I _{RMS}	RMS current	per pin*			70	А
R _{thCH}	thermal resistance case to) heatsink		0.25		K/W
M _D	mounting torque		0.8		1.2	Nm
F _c	mounting force with clip		20		120	Ν
T _{stg}	storage temperature		-55		150	°C
Weight				5		g

* Irms is typically limited by: 1. pin-to-chip resistance; or by 2. current capability of the chip.

А

А

С


1 - GATE

2 - DRAIN (COLLECTOR) 3 - SOURCE (EMITTER)

4 - DRAIN (COLLECTOR)

In case of 1, a common cathode/anode configuration and a non-isolated backside, the whole current capability can be used by connecting the backside.

Outlines TO-3P

m n

пп

SYM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
А	.185	.193	4.70	4.90
A1	.051	.059	1.30	1.50
A2	.057	.065	1.45	1.65
b	.035	.045	0.90	1.15
b2	.075	.087	1.90	2.20
b4	.114	.126	2.90	3.20
с	.022	.031	0.55	0.80
D	.780	.791	19.80	20.10
D1	.665	.6 77	16.90	17.20
Е	.610	.622	15.50	15.80
E1	.531	.539	13.50	13.70
e	.215 BSC		5.45 BSC	
L	.779	.795	19.80	20.20
L1	.134	.142	3.40	3.60
ØP	.126	.134	3.20	3.40
ØP1	.272	.280	6.90	7.10
S	.193	.201	4.90	5.10

All metal area are tin plated.