Preferred Devices

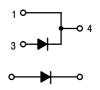
SWITCHMODE [™] **Power Rectifiers**

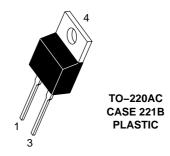
These state-of-the-art devices are a series designed for use in switching power supplies, inverters and as free wheeling diodes.

Features

- Ultrafast 35 and 60 Nanosecond Recovery Time
- 175°C Operating Junction Temperature
- Popular TO-220 Package
- High Voltage Capability to 600 V
- Low Forward Drop
- Low Leakage Specified @ 150°C Case Temperature
- Current Derating Specified @ Both Case and Ambient Temperatures
- Pb-Free Packages are Available*

Mechanical Characteristics:


- Case: Epoxy, Molded
- Weight: 1.9 Grams (Approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds



ON Semiconductor®

http://onsemi.com

ULTRAFAST RECTIFIERS 15 AMPERES, 100–600 VOLTS

MARKING DIAGRAM

A = Assembly Location

Y = Year

WW = Work Week

G = Pb-Free Package

U15xx = Device Code

xx = 10, 15, 20, 40 or 60

KA = Diode Polarity

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

Preferred devices are recommended choices for future use and best overall value.

^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MAXIMUM RATINGS

		MUR					
Rating	Symbol	1510	1515	1520	1540	1560	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	100	150	200	400	600	V
Average Rectified Forward Current (Rated V _R)	I _{F(AV)}	15 @ T _C = 150°C		15 @ T _C = 145°C	Α		
Peak Rectified Forward Current (Rated V _R , Square Wave, 20 kHz)	I _{FRM}	30 @ T _C = 150°C 30 @ T _C = 145°C		30 @ T _C = 145°C	Α		
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	I _{FSM}	200 150		А			
Operating Junction Temperature and Storage Temperature Range	T _J , T _{stg}	-65 to +175		°C			

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Parameter	Symbol	Value	Unit
Maximum Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	1.5	°C/W

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	1520	1540	1560	Unit
Maximum Instantaneous Forward Voltage (Note 1) $(i_F = 15 \text{ A}, T_C = 150^{\circ}\text{C})$ $(i_F = 15 \text{ A}, T_C = 25^{\circ}\text{C})$	VF	0.85 1.05	1.12 1.25	1.20 1.50	V
Maximum Instantaneous Reverse Current (Note 1) (Rated DC Voltage, $T_C = 150^{\circ}C$) (Rated DC Voltage, $T_C = 25^{\circ}C$)	i _R	500 10	500 10	1000 10	μΑ
Maximum Reverse Recovery Time (I _F = 1.0 A, di/dt = 50 A/μs)	t _{rr}	35		60	ns

^{1.} Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

MUR1510, MUR1515, MUR1520

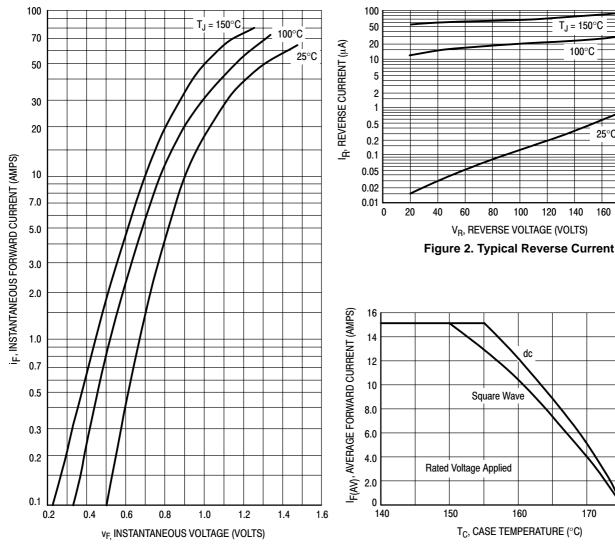
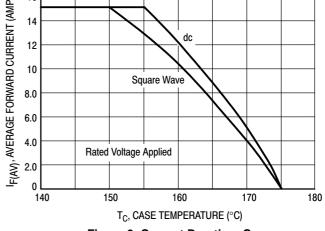



Figure 1. Typical Forward Voltage

 $T_J = 150^{\circ}C$

100°C

120

25°C

180

Figure 3. Current Derating, Case

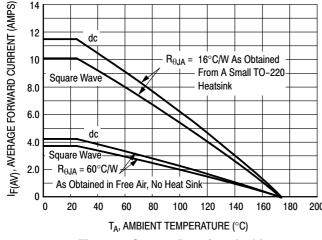


Figure 4. Current Derating, Ambient

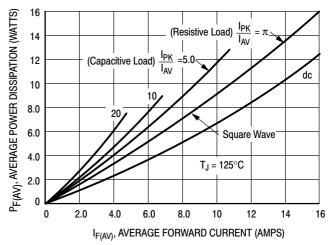
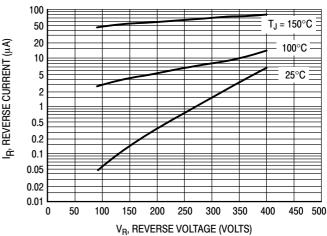



Figure 5. Power Dissipation

MUR1540

Figure 6. Typical Forward Voltage

Figure 7. Typical Reverse Current

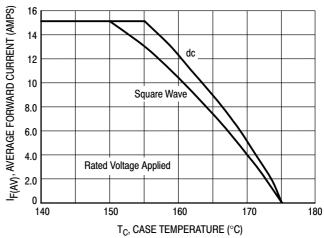


Figure 8. Current Derating, Case

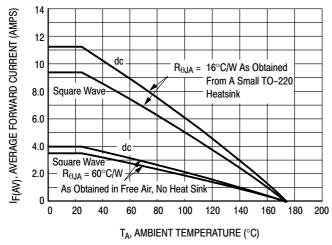


Figure 9. Current Derating, Ambient

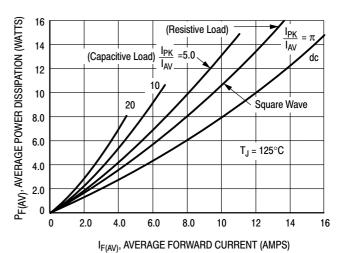


Figure 10. Power Dissipation

MUR1560

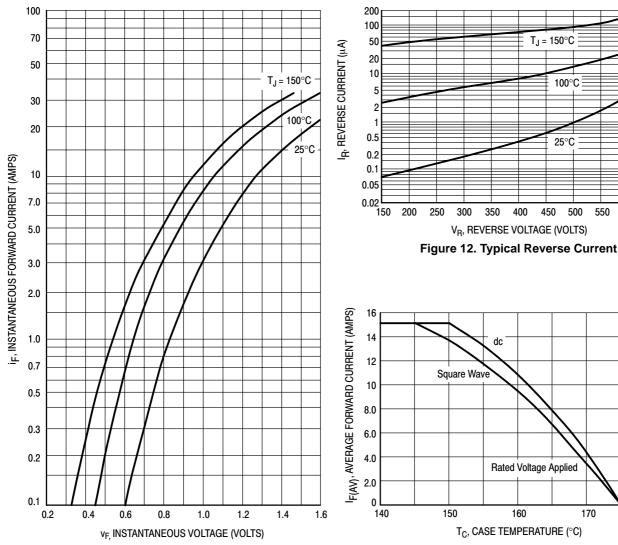


Figure 11. Typical Forward Voltage

Figure 13. Current Derating, Case

160

180

 $T_J = 150^{\circ}C$

100°C

25°C

400

450

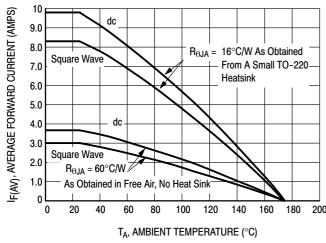


Figure 14. Current Derating, Ambient

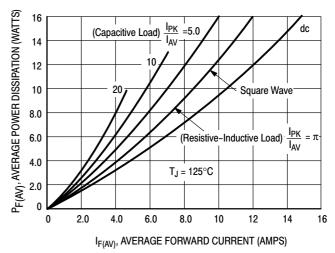


Figure 15. Power Dissipation

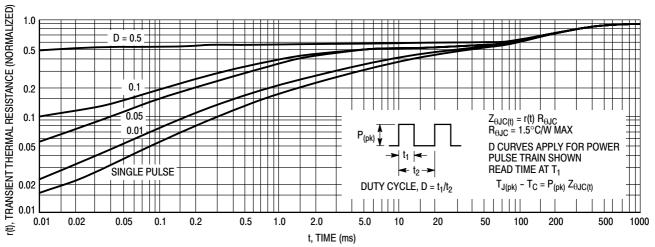


Figure 16. Thermal Response

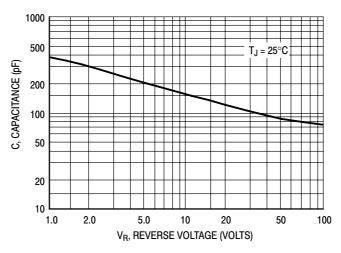
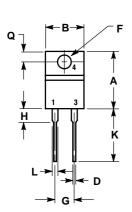
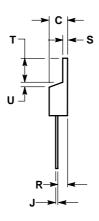


Figure 17. Typical Capacitance

ORDERING INFORMATION


Device	Package	Shipping [†]
MUR1510	TO-220	
MUR1510G	TO-220 (Pb-Free)	
MUR1515	TO-220	
MUR1515G	TO-220 (Pb-Free)	
MUR1520	TO-220	
MUR1520G	TO-220 (Pb-Free)	50 Units / Rail
MUR1540	TO-220	
MUR1540G	TO-220 (Pb-Free)	
MUR1560	TO-220	
MUR1560G	TO-220 (Pb-Free)	


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

TO-220 TWO-LEAD

CASE 221B-04 ISSUE D

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI
 Y14.5M. 1982.
- 2. CONTROLLING DIMENSION: INCH.

	INC	HES	MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.595	0.620	15.11	15.75	
В	0.380	0.405	9.65	10.29	
С	0.160	0.190	4.06	4.82	
D	0.025	0.035	0.64	0.89	
F	0.142	0.147	3.61	3.73	
G	0.190	0.210	4.83	5.33	
Н	0.110	0.130	2.79	3.30	
J	0.018	0.025	0.46	0.64	
K	0.500	0.562	12.70	14.27	
L	0.045	0.060	1.14	1.52	
Q	0.100	0.120	2.54	3.04	
R	0.080	0.110	2.04	2.79	
S	0.045	0.055	1.14	1.39	
Т	0.235	0.255	5.97	6.48	
U	0.000	0.050	0.000	1.27	

SWITCHMODE is a trademark of Semiconductor Components Industries, LLC.

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use a components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.