Unit in mm

TOSHIBA THYRISTOR SILICON DIFFUSED TYPE

SF2500EX22

HIGH POWER CONTROL APPLICATIONS

Repetitive Peak Off-State Voltage $: V_{DRM}$ Repetitive Peak Reverse Voltage $: V_{RRM}$ = 2500V

• Average On-State Current : I_{T (AV)} = 2500A

• Turn-Off Time : $t_q = 400 \mu s$ (Max.)

• Critical Rate of Rise of On-State Current : di/dt=250A/μs

• Critical Rate of Rise of Off-State Voltage: dv/dt=1500V/μs

• Flat Package

MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT	
Repetitive Peak Off-State Voltage and Repetitive Peak Reverse Voltage	V _{DRM} V _{RRM}	2500	V	
Non-Repetitive Peak Reverse Voltage (Non-Repetitive $< 5 \text{ms}$, $T_j = 0 \sim 125 ^{\circ}\text{C}$)	v_{RSM}	2750	V	
R.M.S On-State Current	I _T (RMS)	3925	A	
Average On-State Current	I _{T (AV)}	2500	A	
Peak One Cycle Surge On-State Current (Non-Repetitive)	$I_{ ext{TSM}}$	45000 (50Hz)	· A	
		50000 (60Hz)		
I ² t Limit Value	${f I}^2{f t}$	1×10^7	${ m A}^2{ m s}$	
Critical Rate of Rise of On-State Current (Note)	di / dt	250	A/μs	
Peak Gate Power Dissipation	P_{GM}	30	W	
Average Gate Power Dissipation	P _G (AV)	4	W	
Peak Forward Gate Current	I_{GM}	6	A	
Peak Forward Gate Voltage	v_{FGM}	30	V	
Peak Reverse Gate Voltage	$v_{ m RGM}$	5	V	
Junction Temperature	T_{j}	-40~125	$^{\circ}\mathrm{C}$	
Storage Temperature Range	$\mathrm{T_{stg}}$	-40~125	$^{\circ}\mathrm{C}$	
Mounting Force	_	39.2±3.9	kN	

2- \$5.2 ± 0.2
DEPTH: 2.5 ± 0.4

260 ± 8

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

275 ± 0.5

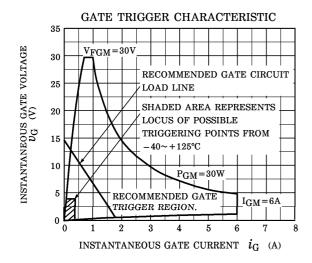
275 ± 0.5

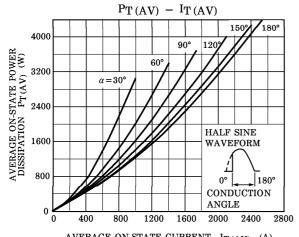
275

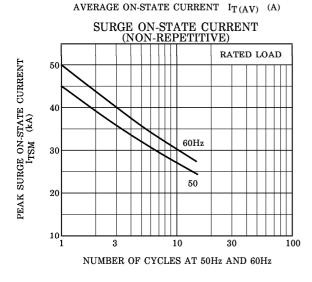
13-120J1A

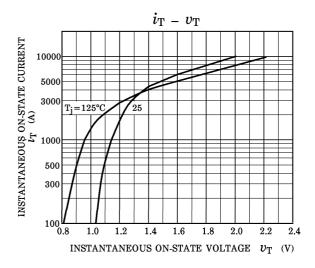
Weight: 1350g

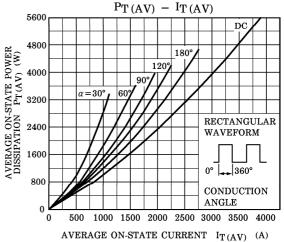
JEITA TOSHIBA


Note : $V_D=1/2$ Rated, $T_j=120$ °C, Gate Supply ($V_G=15V$, $R_G=8\Omega$, $t_r \le 1\mu s$)


1 2001-04-17


ELECTRICAL CHARACTERISTICS


CHARACTERISTIC	SYMBOL	TEST CONDITION		MIN.	MAX.	UNIT
Repetitive Peak Off-State Current and Repetitive Peak Reverse Current	I _{DRM} I _{RRM}	$V_{ m DRM} = V_{ m RRM} = { m Rated}, \ T_{ m j} = 125 { m ^{\circ}C}$		_	120	mA
Peak On-State Voltage	$ m V_{TM}$	$I_{TM} = 8000A, T_j = 25^{\circ}C$		_	1.82	V
Gate Trigger Voltage	v_{GT}	$V_{ m D}$ =12V, R $_{ m L}$ =6 Ω	$T_j = -40^{\circ}C$	_	4.0	V
			$T_j = 25$ °C	_	2.5	
Gate Trigger Current	${ m I_{GT}}$		$T_j = -40$ °C	_	400	mA
			$T_j = 25$ °C	_	250	
Gate Non-Trigger Voltage	$v_{ m GD}$	$V_D=1/2$ Rated, $T_j=125$ °C		0.2	_	V
Gate Non-Trigger Current	$I_{ m GD}$			5		mA
Delay Time	$^{\mathrm{t}_{\mathrm{d}}}$	V_D =0.5 Rated, T_j =25°C Gate Supply $(V_G$ =15V, R_G =8 Ω , t_r $\leq 1\mus)$		_	5	μs
Gate Turn-On Time	tgt			_	10	μs
Turn-Off Time	t_q	I_{T} =1200A, V_{R} \geq 200V dv/dt =25V/ μ s, T_{j} =115°C V_{DRM} =1/2 Rated		_	400	μs
Holding Current	${ m I_H}$	$T_j = 25$ °C, $R_L = 6\Omega$		_	300	mA
Critical Rate of Rise of Off-State Voltage	dv / dt	V _{DRM} =1/2 Rated, T _j =125°C Gate Open Exponential Rise		1500	_	V/μs
Thermal Resistance	$R_{ ext{th (j-f)}}$	Junction to Fin		0.0125	°C/W	


2 2001-04-17

TRANSIENT THERMAL IMPEDANCE (JUNCTION TO FIN)

0.014

0.014

0.010

0.010

0.008

0.004

0.004

0.002

0.004

0.002

TIME t (s and ms)

3 2001-04-17

RESTRICTIONS ON PRODUCT USE

000707EAA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- ◆ The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.