SKM 600GA176D

SEMITRANSTM 4

Trench IGBT Modules

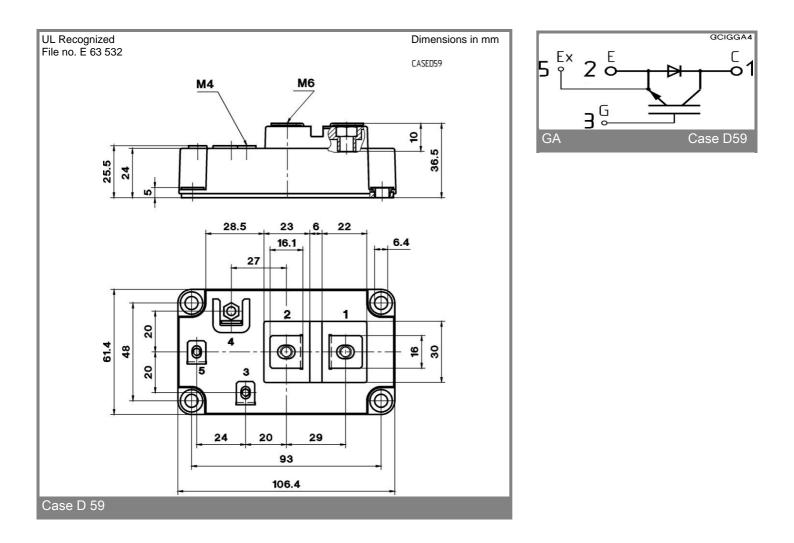
Target Data
Features
 Homogeneous Si
• Trench = Trenchgate technology
 V_{CE(sat)} with positive temperature coefficient
High short circuit capability, self

High short circuit capability, self limiting to 6 x I_C

Typical Applications

- AC inverter drives mains 575 -790 V AC
- Public transport (auxiliary systems)

Remarks


• $I_{DC} \le 500$ A limited for $T_{Terminal} = 100^{\circ}C$

Absolute Maximum Ratings		T _{case} = 25°C, unless otherwise specified						
Symbol	Conditions	Values	Units					
IGBT								
V _{CES}		1700	V					
I _C	T _c = 25 (80) °C	530 (380)	А					
I _{CRM}	T _c = 25 (80) °C, t _p = 1 ms	1040 (760)	А					
V _{GES}	- F	± 20	V					
T _{vj} , (T _{stg})	$T_{OPERATION} \leq T_{stg}$	- 40 +150 (125)	°C					
V _{isol}	AC, 1 min.	4000	V					
Inverse diode								
I _F	T _c = 25 (80) °C	330 (240)	А					
I _{FRM}	T _c = 25 (80) °C, t _p = 1 ms	1040 (760)	А					
I _{FSM}	t _p = 10 ms; sin.; T _j = 150 °C		А					

Character	ristics T	_{case} = 25°C	se = 25°C, unless otherwise specified					
Symbol	Conditions	min.	typ.	max.	Units			
IGBT								
V _{GE(th)}	$V_{GE} = V_{CE}$, $I_{C} = 16 \text{ mA}$	5,2	5,8	6,4	V			
ICES	$V_{GE} = 0, V_{CE} = V_{CES}, T_{j} = 25 () °C$		0,2	0,6	mA			
V _{CE(TO)}	T _j = 25 () °C		1 (0,9)	1,2 (1,1)	V			
r _{CE}	V _{GE} = 15 V, T _j = 25 (125) °C				mΩ			
V _{CE(sat)}	I_{C} = 400 A, V_{GE} = 15 V, chip level		2 (2,45)	2,45 (2,9)	V			
C _{ies}	under following conditions		28,5		nF			
C _{oes}	V _{GE} = 0, V _{CE} = 25 V, f = 1 MHz		1,5		nF			
C _{res}			1,2		nF			
L _{CE}				20	nH			
R _{CC'+EE'}	res., terminal-chip T _c = 25 (125) °C		0,18 (0,22)		mΩ			
t _{d(on)}	V _{CC} = 900 V, I _C = 400 A				ns			
t _r	$R_{Gon} = R_{Goff} = 4 \Omega, T_j = 125 °C$				ns			
t _{d(off)}	V _{GE} V				ns			
t _f					ns			
E _{on} (E _{off})			290 (110)		mJ			
Inverse diode								
$V_F = V_{EC}$	I _F = 400 A; V _{GE} = 0 V; T _j = 25 (125) °C		1,6 (1,6)	,	V			
V _(TO)	$T_{j} = 25 (125) \degree C$		1,1	1,3	V			
r _T	$T_{j} = 25 (125) °C$		1,3	1,5	mΩ			
I _{RRM}	$I_F = 400 \text{ A}; T_j = 125 \text{ () }^{\circ}\text{C}$				A			
Q _{rr}	di/dt = A/µs				μC			
E _{rr}	V _{GE} = V				mJ			
	characteristics							
R _{th(j-c)}	per IGBT			0,055	K/W			
R _{th(j-c)D}	per Inverse Diode			0,09	K/W			
R _{th(c-s)}	per module			0,038	K/W			
Mechanic	al data							
M _s	to heatsink				Nm			
M _t	to terminals				Nm			
w					g			

GA

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.