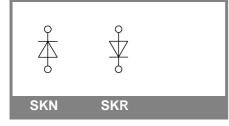
SKN 141F

Stud Diode

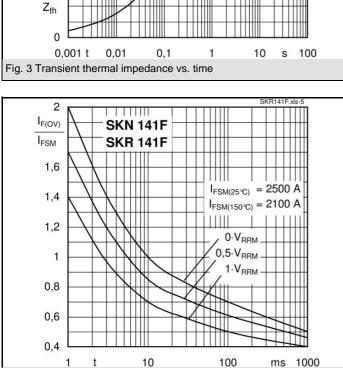
Fast Recovery Rectifier Diode

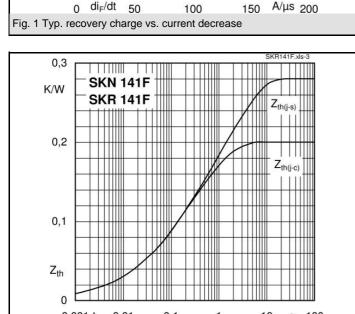
SKN 141F SKR 141F

Features


- Small recovered charge
- Soft recovery
- Hermetic metal case with glass insulator
- Threaded stud M12
- SKN: anode to stud; SKR: cathode to stud

Typical Applications


- Inverse diode for GTO and asymmetric thyristor
- Inverters and choppers
- A.C. motor control
- Uniterruptible power supplies
 (UPS)


V _{RSM}	V _{RRM}	I _{FRMS} = 260 A (maximum value for continuous operation)		
V	V	I _{FAV} = 140 A (sin. 180; 1000 Hz; T _c = 100 °C)		°C)
1200	1200	SKN 141F12	SKR 141F12	
1400	1400	SKN 141F14	SKR 141F14	
1500	1500	SKN 141F15	SKR 141F15	
1700	1700	SKN 141F17	SKR 141F17	

Symbol	Conditions	Values	Units
I _{FAV}	sin. 180; T _c = 85 (100) °C	168 (140)	А
I _{FAV}	K1,1F; T _a = 35 °C; sin. 180; 1000 Hz	114	А
I _{FSM}	T _{vi} = 25 °C; 10 ms	2500	Α
	T _{vi} = 150 °C; 10 ms	2100	А
i²t	T _{vj} = 25 °C; 8,3 10 ms	31000	A²s
	T _{vj} = 150 °C; 8,3 10 ms	22000	A²s
V _F	T _{vi} = 25 °C; I _F = 300 A	max. 1,8	V
V _(TO)	T _{vj} = 150 °C	max. 1,1	V
r _T	T _{vj} = 150 °C	max. 2	mΩ
I _{RD}	$T_{vj} = 25 \text{ °C}; V_{RD} = V_{RRM}$	max. 1	mA
I _{RD}	T_{vj} = 150 °C, V_{RD} = V_{RRM}	max. 100	mA
Q _{rr}	T _{vi} = 150 °C, I _F = 100 A,	90	μC
I _{RM}	-di/dt = 100 A/µs, V _R = 400 V	90	А
t _{rr}		2000	ns
E _{rr}		-	mJ
R _{th(j-c)}		0,2	K/W
R _{th(c-s)}		0,08	K/W
T _{vj}		- 40 + 150	°C
T _{stg}		- 55 + 150	°C
V _{isol}		-	V~
M _s	to heatsink	10	Nm
а		5 * 9,81	m/s²
m	approx.	100	g
Case		E 31	

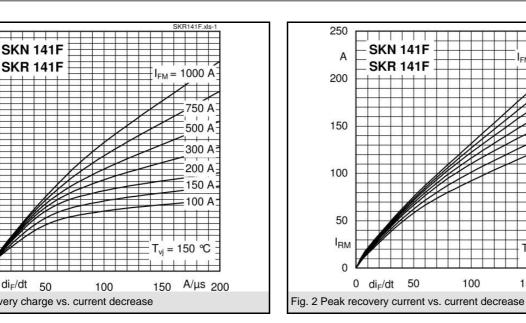
200

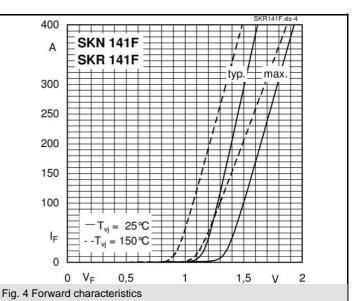
μC

160

140

120


100


80

60

40 Qrr

0

100

 $I_{FM} = 1000 A_{2}$

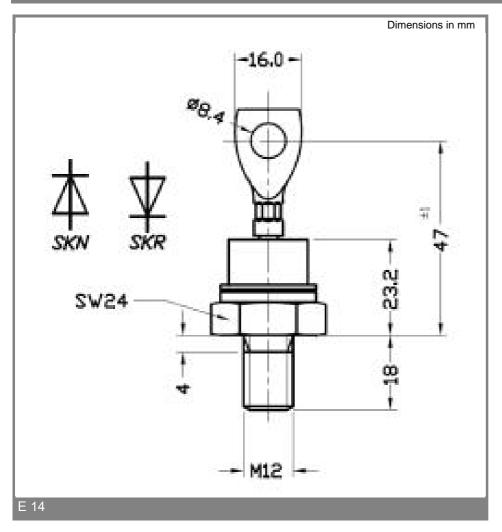
750 A

500 A

350 A

200 A

150 A


00

T_{vj} = 150 °C

150 A/µs 200

Fig. 5 Surge overload current vs. time

SKN 141F

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.