SKT 491

Capsule Thyristor

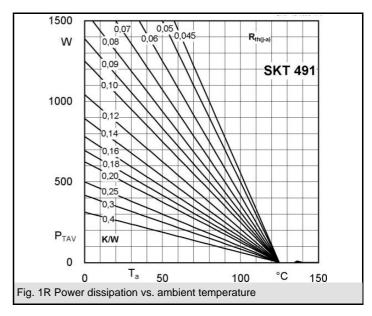
Line Thyristor

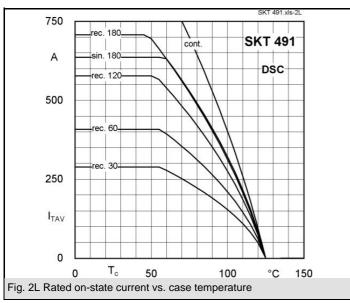
SKT 491

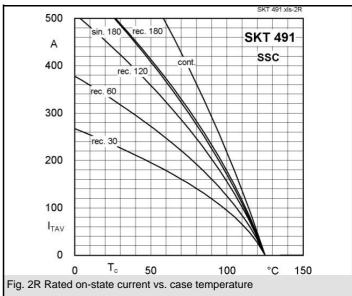
Features

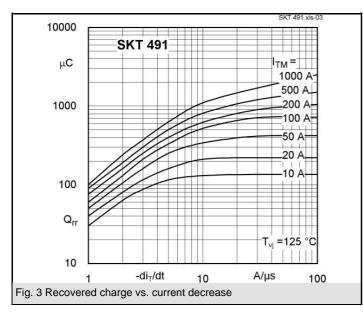
- Hermetic metal case with ceramic insulator
- Capsule package for double sided cooling
- Shallow design with single sided cooling
- · International standard case
- Off-state and reverse voltages up to 1800 V
- Amplifying gate

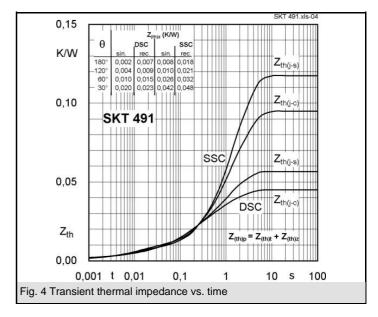
Typical Applications

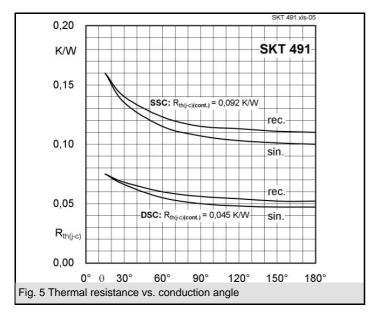

- DC motor control (e. g. for machine tools)
- Controlled rectifiers (e. g. for battery charging)
- AC controllers
 - (e. g. for temperature control)
- Recommended snubber network e. g. for $V_{VRMS} \le 400~V$: R = 33 $\Omega/32~W$, C = 0,47 μF

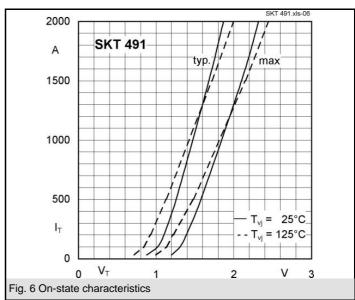

V_{RRM}, V_{DRM}	I _{TRMS} = 1000 A (maximum value for continuous operation)		
V	I_{TAV} = 490 A (sin. 180; DSC; T_c = 80 °C)		
400	SKT 491/04E		
1200	SKT 491/12E		
1400	SKT 491/14E		
1600	SKT 491/16E		
1800	SKT 491/18E		
	V 400 1200 1400 1600		

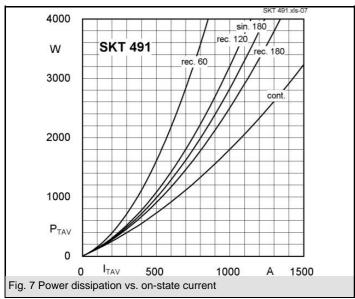

Symbol	Conditions	Values	Units
I _{TAV}	sin. 180; T _c = 100 (85) °C;	321 (452)	Α
I _D	2 x P8/180; T _a = 45 °C; B2 / B6	320 / 450	Α
	2 x P8/180F; T _a = 35 °C; B2 / B6	760 /1000	Α
I_{RMS}	2 x P8/180; T _a = 45 °C; W1C	350	Α
I _{TSM}	T _{vi} = 25 °C; 10 ms	8000	Α
	T _{vi} = 125 °C; 10 ms	7000	Α
i²t	T _{vj} = 25 °C; 8,3 10 ms	320000	A²s
	T _{vj} = 125 °C; 8,3 10 ms	245000	A²s
V _T	T _{vi} = 25 °C; I _T = 1500 A	max. 2,1	V
$V_{T(TO)}$	T _{vi} = 125 °C	max. 1,1	V
r _T	T _{vj} = 125 °C	max. 0,7	mΩ
I_{DD} ; I_{RD}	$T_{vj} = 125 \text{ °C; } V_{RD} = V_{RRM}; V_{DD} = V_{DRM}$	max. 50	mA
t _{gd}	$T_{vj} = 25 \text{ °C; } I_G = 1 \text{ A; } di_G/dt = 1 \text{ A/}\mu\text{s}$	1	μs
t _{gr}	$V_{\rm D} = 0.67 * V_{\rm DRM}$	1	μs
(di/dt) _{cr}	T _{vi} = 125 °C	max. 125	A/µs
(dv/dt) _{cr}	T _{vi} = 125 °C	max. 1000	V/µs
t_q	$T_{vj} = 125 ^{\circ}\text{C}$,	50 150	μs
I _H	T_{vj} = 25 °C; typ. / max.	150 / 500	mA
I_L	T_{vj} = 25 °C; R_G = 33 Ω ; typ. / max.	500 / 2000	mA
V_{GT}	T _{vj} = 25 °C; d.c.	min. 3	V
I_{GT}	$T_{vj} = 25 ^{\circ}\text{C}; \text{d.c.}$	min. 250	mA
V_{GD}	$T_{vj} = 125 ^{\circ}\text{C}; \text{d.c.}$	max. 0,25	V
I_{GD}	T_{vj} = 125 °C; d.c.	max. 10	mA
R _{th(j-c)}	cont.; DSC	0,045	K/W
R _{th(j-c)}	sin. 180; DSC / SSC	0,047 / 0,1	K/W
$R_{th(j-c)}$	rec. 120; DSC / SSC	0,054 / 0,113	K/W
$R_{th(c-s)}$	DSC / SSC	0,012 / 0,024	K/W
T_{vj}		- 40 + 125	°C
T_{stg}		- 40 + 130	°C
V _{isol}		-	V~
F	mounting force	5,2 8	kN
а			m/s²
m	approx.	105	g
Case		B 11	

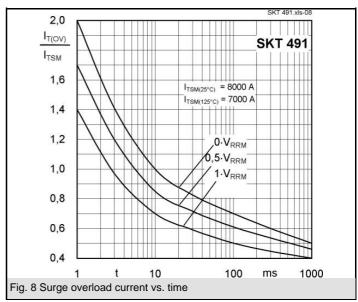


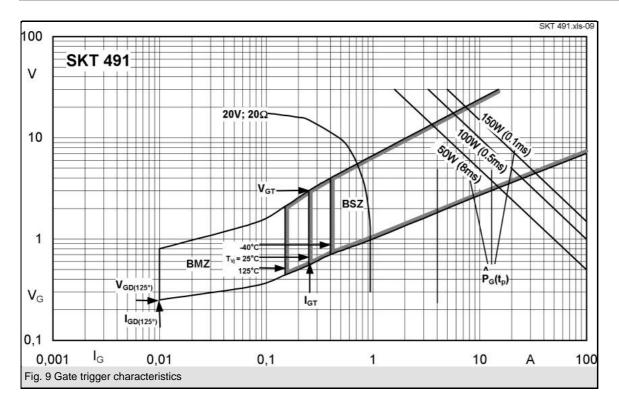


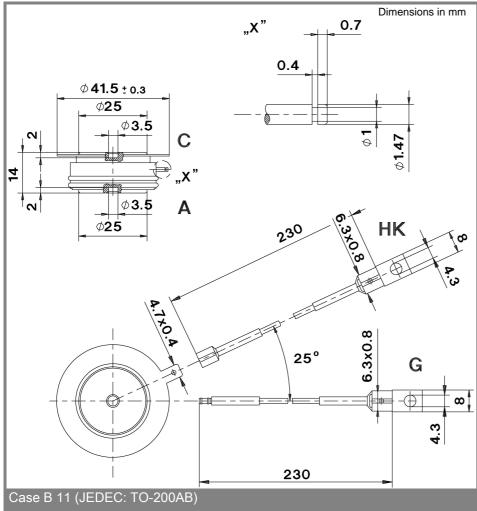









SKT 491



This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.